How to Use an Air Conditioner to Cool Data Center Cabinets Climate Control


How to Use an Air Conditioner to Cool Data Center Cabinets Climate Control

Network devices, particularly servers, produce significant heat within confined areas. With advancements in technology, modern servers are now more compact and feature faster CPUs, resulting in greater heat output. This heat, if not managed properly, can stress the  climate control systems of data centers. In fact, the heat generated by components in a mid-sized data center can rival the heat needed to warm a house during winter. 

If servers and other network equipment overheat, they may fail or have a reduced lifespan. Heat damage might not be immediately noticeable; it can cause issues like network node crashes and hardware failures, leading to extended downtime.Server rooms are generally equipped with specialized cooling systems such as powerful air conditioners and raised floor cooling systems to handle high cooling demands. However, it's also essential to ensure that individual cabinets housing network equipment have adequate ventilation. Even with lower data center temperatures, cabinets may still overheat if air distribution is suboptimal.

The Best Way to Cool Server Cabinets

Several variables, such as door perforations, cabinet size, and component types, influence the temperature inside a cabinet. Ensuring proper airflow is the most straightforward method to cool network equipment. The objective is to ensure that each server, router, and switch receives adequate cooling air, regardless of its position in the cabinet. While equipment manufacturers provide minimal guidance in this area, some basic methods can help optimize cabinet ventilation.

1. Enhance Airflow Through the Cabinet Door

To ensure good airflow, most server manufacturers suggest that the front and back of cabinet doors have at least 63% open area. This can be achieved by either removing the cabinet doors entirely or using cabinets with perforated doors. Since most servers and network devices have internal fans, open or perforated doors often provide sufficient ventilation, assuming the data center has adequate air conditioning to handle the heat load. Additionally, using cabinets with side walls can prevent air from one cabinet mixing with the hot air from neighboring cabinets.

2. Determine the Type of Convection Cooling Needed

2.1Natural Convection Cooling: 

When the ambient temperature around the cabinet is lower than its internal temperature, heat naturally transfers from the warmer environment to the cooler one. This simple method relies on the natural release of heat through the cabinet walls. However, it is often less effective, especially when the temperature difference is not sufficient to cool the components adequately.


2.2Forced Convection Cooling:

Fans or blowers can enhance heat transfer from hotter areas to cooler ones by reducing resistance at the boundary between these areas. Fans provide an affordable solution for forced convection cooling, helping to reduce internal temperatures. However, if the outside air contains contaminants like dust or oil, these can settle on electrical components. In such cases, using a closed-loop air-to-air heat exchanger is recommended, although it still relies on the ambient air temperature for cooling.


2.3Active Convection Cooling:
 

hen natural or forced convection cannot sufficiently cool the components, **air conditioning** may be necessary. Air conditioning operates on a closed-loop control system, which is essential when components need protection from environmental factors like dirt or liquids. Enclosures like Leipole's LP4000N-1 can save energy by cooling only the enclosure, not the entire room or data center. Calculating cooling capacity is a crucial step in choosing the right size air conditioner. The cooling capacity of cabinet air conditioners ranges from 300 to 6,000 watts (1,000 BTU/hour to 20,000 BTU/hour). Accurate calculations are necessary to select the appropriate system for your needs.


3. Optimal Equipment Placement and Server Fans

Avoid overloading the cabinet; filling it to about 75% to 80% of its capacity is usually sufficient. Maintain at least 1U of space between rows of servers to ensure proper front-to-back ventilation. Leave at least 4cm between the equipment and the front and back of the cabinet. Use blanking panels to close off unused spaces in the cabinet to prevent hot and cold air from mixing. Improve ventilation by installing fans to actively circulate air through the cabinet. The most common type of cabinet fan is a fan panel mounted on top of the cabinet, which draws air in from the bottom or blows it out through a door. For targeted cooling of specific areas, use fans or fan panels mounted inside the cabinet.


4. Monitoring Temperature
 

To ensure your components operate within safe temperature ranges, monitor the conditions inside the cabinet. Here are some methods: 

Simple Thermometer:  Place a thermometer in the cabinet and take regular temperature readings. This method is inexpensive but requires manual control if temperatures rise too high.

Thermostats: Thermostats can automatically activate a fan when the cabinet temperature exceeds a preset limit, keeping temperatures within safe limits without manual intervention.

SNMP Sensors and IP-Accessible Sensors: M1any network devices have built-in SNMP or IP-accessible sensors that indicate internal temperatures. This method is preferred as these sensors are located where the temperature matters most, and they allow Advanced Cooling Strategies and Technology Insights Beyond basic and intermediate cooling techniques, advanced strategies and technologies can further optimize the climate control of server cabinets. Here are some additional methods and innovations to consider:
 

5. Liquid Cooling Solutions

Direct-to-Chip Liquid Cooling:
Direct-to-chip liquid cooling involves circulating a coolant directly to the hottest components of a server, such as CPUs and GPUs. This method is highly efficient because it directly removes heat from the source, allowing for higher performance and reliability.

Immersion Cooling:
Immersion cooling involves submerging servers in a thermally conductive but electrically insulating liquid. This method provides excellent cooling efficiency and can significantly reduce the need for air conditioning. Immersion cooling is particularly effective for high-density data centers where traditional air cooling methods may be insufficient.

6. Hot Aisle/Cold Aisle Containment


Hot Aisle Containment:
In a hot aisle containment system, hot air exhausted from server cabinets is contained and directed away from the cooling intakes of other servers. This approach prevents hot and cold air from mixing, improving the efficiency of the air conditioning system.

Cold Aisle Containment:
Cold aisle containment involves containing the cold air within a specific aisle and directing it to the server intakes. This ensures that only cold air reaches the servers, maximizing cooling efficiency and reducing the workload on the air conditioning system.

7. Free Cooling


Air-Side Economizers:
Air-side economizers bring in cool outside air to reduce the need for mechanical cooling. When the outside temperature is lower than the temperature inside the data center, these systems can significantly cut energy costs by leveraging natural cooling.

Water-Side Economizers:
Water-side economizers use cool external water sources, such as rivers or lakes, to reduce the temperature of the water used in the cooling system. This method can be particularly effective in regions with cooler climates.

 8. Advanced Monitoring and Management Systems


DCIM (Data Center Infrastructure Management) Tools:
DCIM tools provide comprehensive monitoring and management of data center infrastructure, including power, cooling, and environmental conditions. These tools help optimize the performance and efficiency of cooling systems through real-time data and analytics.

AI and Machine Learning:
Artificial intelligence and machine learning can be used to predict cooling requirements and optimize climate control systems. By analyzing historical data and current conditions, AI algorithms can make real-time adjustments to improve cooling efficiency and reduce energy consumption.

Implementing Energy-Efficient Practices

To further enhance the effectiveness of your climate control and air conditioning systems, consider implementing the following energy-efficient practices:

Regular Maintenance:
Regular maintenance of your air conditioning units and cooling systems is crucial to ensure they operate at peak efficiency. This includes cleaning filters, checking for leaks, and ensuring that all components are functioning correctly.

Energy-Efficient Equipment:
Invest in energy-efficient air conditioners and cooling equipment. Look for units with high SEER (Seasonal Energy Efficiency Ratio) ratings and other energy-saving features.

Optimized Airflow Management:
Ensure that there are no obstructions to airflow within your server cabinets and data center. Use blanking panels to fill empty rack spaces and prevent hot and cold air from mixing.

Temperature Set Points:
Avoid setting your data center temperature lower than necessary. ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) provides guidelines on optimal temperature ranges for data centers that balance cooling efficiency and equipment safety.
 

Leipole Explained

*Air-conditioned server cabinets:
When you need to house servers or IT equipment outside of your data center, especially in harsh environments where there is no cooling infrastructure, Leipole IP54 / 4000N-1 cabinets are the right solution. The CNC-controlled air conditioning unit (sizes ranging from 1,705 to 13,650 BTU or 500 to 4,000 watts) ensures that the equipment stays cool, even at temperatures of up to 55°C. The unit is designed to be used in a wide range of environments. It also eliminates heat buildup thanks to a closed cooling circuit. Sealed cable entries prevent air exchange with warm ambient air. Simply install your equipment, connect the air conditioning unit and you have a complete, self-contained, stand-alone micro data center. No installation work is required as the internal evaporator eliminates condensation.